DIMETALATION OF ISOPROPENYLACETYLENE. APPLICATION IN THE SYNTHESIS OF 3-METHYLSELENOPHEN, 3-METHYLENE-2,3-DIHYDROSELENOPHEN AND THE TELLURIUM ANALOGUES

W. Kulik, H.D. Verkruijsse, R.L.P. de Jong, H. Hommes and L. Brandsma*

Department of Organic Chemistry of the State University Croesestraat 79, 3522 AD Utrecht, The Netherlands

Abstract: Reaction of the dilithio derivative of isopropenylacetylene with one equivalent of selenium or tellurium, followed by addition of t-BuOH and HMPT gives 3-methylene-2,3-dihydroselenophen and 3-methylselenophen or 3-methylene-2,3-dihydrotellurophen in reasonable yields. The latter compound can be converted into 3-methyltellurophen by treatment with t-BuOK in HMPT.

As a result of our continued 1,2,3 study of unsaturated dimetalated compounds we wish to report the dimetalation of isopropenylacetylene $\frac{1}{2}$ and the application in the synthesis of 3-methylselenophen, 3-methylene-2,3-dihydroselenophen and the corresponding tellurium compounds 6 and 7:

Addition at -70°C of a solution of 30 g t-BuOK in 50 ml of THF to a mixture of $\mathfrak L$ (0.10 mol), butyllithium (0.27 mol in about 180 ml of hexane) and 110 ml of THF (obtained by adding $\mathfrak L$ below -20° to the solution of BuLi in THF and hexane) gave an orange solution of $\mathfrak L$. After stirring this solution for an additional 30 min at -70° the temperature was allowed to rise to -5°C. Anhydrous LiBr (0.25 mol in 60 ml of THF) was added, giving a light-yellow precipitate ($\mathfrak L$). Powdered red selenium or tellurium (0.11 at) was introduced in one portion at -45°C. The cooling bath was removed and the temperature was allowed to rise to 0°C. Tert-butylalcohol (for the amount see the table) was then added at -20°, followed by 50 ml of hexamethylphosphoric triamide (HMPT) at 0°C. The mixture was stirred for a period and at a temperature indicated in the table. Subsequent addition of ice water (500 ml), followed by the usual work-up (extraction with diethyl ether-pentane 1:1, washing with water, drying over MgSO $_{\mathfrak L}$ and careful distillative removal of the solvents at normal pressure) gave 3-methylselenophen and 3-methylene-2,3-dihydrotelluro-

phen. 3-Methylene-2,3-dihydroselenophen was obtained in admixture with 3-methylselenophen. To obtain 3-methyltellurophen the dihydro compound (0.05 mol) was heated at 50°C during 1 h with a mixture of t-BuOK (0.01 mol), t-BuOH (0.006 mol), HMPT (10 ml) and THF (10 ml). After addition of water, extraction with ether, washing with water, drying over MgSO₄ the tellurophen was obtained in about 90% yield.

Compound*	b.p. °C/mmHg	n _D ²⁰	Yield (%)	t-BuOH (mol)	reaction temp. (°C)	reaction time (min.)
6, X = Se**	58/11	1.6160	46	0.13	20	45
7, X = Se	28/15	1.5340	42	0.13	50	90
6, X = Te	87/11	> 1.71	51	0.26	55	45
$\frac{7}{\sim}$, X = Te	72/14	1.6267	90	-	-	-

^{*} The $^{13}\mathrm{C}$ and $^{1}\mathrm{H}$ NMR data were in accordance with the structures. The purity (by G.L.C. and $^{1}\mathrm{H}$ NMR) was at least 95%

Although it has been known from previous investigations 4 that elemental selenium and tellurium smoothly react with alkali acetylides, the successful synthesis of 6 and 7 demonstrate that the elements discriminate satisfactorily between the two nucleophilic sites in 2 in favour of the more basic one. Reaction of 2 with dimethyldiselenide (one equivalent) followed by aqueous work-up gave $HC=C-C(CH_2SeCH_3)=CH_2$ as the sole isolable product,(b.p. $62^{\circ}C/18$ mmHg, n_D^{20} 1.5436) in 85% yield. In this case too there is complete regiospecificity with respect to the nucleophilic attack on selenium.

Our synthesis starting with the easily accessible isopropenylacetylene 5 represent a surprisingly facile access to the heterocycles 6 and 7 and it will probably be hard to find a more simple route.

References

- 1. Part II: H. Hommes, H.D. Verkruijsse and L. Brandsma, J. Chem. Soc., Chem. Commun., (1981), 366.
- 2. Part III: H. Hommes, H.D. Verkruijsse and L. Brandsma, Tetrahedron Lett., (1981) 2495.
- 3. H. Hommes, H.D. Verkruijsse and L. Brandsma, Dimetalation of $HC=C-CH=CH_2$ to $KC=C-C(K)=CH_2$ with $BuLi.\underline{t}-BuOK$, to be published.
- 4. H.E. Wijers, C. Jonker and L. Brandsma, Recl. Trav. Chim. Pays-Bas, 83, 208 (1964).
- 5. L. Brandsma, Preparative Acetylenic Chemistry, Elsevier, 1971.

(Received in UK 17 March 1983)

^{**} Ratio 6:7 about 9.